Identification of Caenorhabditis elegans genes required for neuronal differentiation and migration.
نویسندگان
چکیده
To understand the mechanisms that guide migrating cells, we have been studying the embryonic migrations of the C. elegans canal-associated neurons (CANs). Here, we describe two screens used to identify genes involved in CAN migration. First, we screened for mutants that died as clear larvae (Clr) or had withered tails (Wit), phenotypes displayed by animals lacking normal CAN function. Second, we screened directly for mutants with missing or misplaced CANs. We isolated and characterized 30 mutants that defined 14 genes necessary for CAN migration. We found that one of the genes, ceh-10, specifies CAN fate. ceh-10 had been defined molecularly as encoding a homeodomain protein expressed in the CANs. Mutations that reduce ceh-10 function result in Wit animals with CANs that are partially defective in their migrations. Mutations that eliminate ceh-10 function result in Clr animals with CANs that fail to migrate or express CEH-23, a CAN differentiation marker. Null mutants also fail to express CEH-10, suggesting that CEH-10 regulates its own expression. Finally, we found that ceh-10 is necessary for the differentiation of AIY and RMED, two additional cells that express CEH-10.
منابع مشابه
The Caenorhabditis elegans gene ham-2 links Hox patterning to migration of the HSN motor neuron.
The Caenorhabditis elegans HSN motor neurons permit genetic analysis of neuronal development at single-cell resolution. The egl-5 Hox gene, which patterns the posterior of the embryo, is required for both early (embryonic) and late (larval) development of the HSN. Here we show that ham-2 encodes a zinc finger protein that acts downstream of egl-5 to direct HSN cell migration, an early different...
متن کاملA CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans.
Mammalian p300 and CBP are related transcriptional cofactors that possess histone acetyltransferase activity. Inactivation of CBP/p300 is critical for adenovirus E1A to induce oncogenic transformation and to inhibit differentiation, suggesting that these proteins are likely to play a role in cell growth and differentiation. Here we show that a Caenorhabditis elegans gene closely related to CBP/...
متن کاملFunctional genomic identification of genes required for male gonadal differentiation in Caenorhabditis elegans.
The Caenorhabditis elegans somatic gonad develops from a four-cell primordium into a mature organ that differs dramatically between the sexes in overall morphology (two arms in hermaphrodites and one in males) and in the cell types comprising it. Gonadal development in C. elegans is well studied, but regulation of sexual differentiation, especially later in gonadal development, remains poorly e...
متن کاملRapid sequence evolution of transcription factors controlling neuron differentiation in Caenorhabditis.
Whether phenotypic evolution proceeds predominantly through changes in regulatory sequences is a controversial issue in evolutionary genetics. Ample evidence indicates that the evolution of gene regulatory networks via changes in cis-regulatory sequences is an important determinant of phenotypic diversity. However, recent experimental work suggests that the role of transcription factor (TF) div...
متن کاملThe neuronal genome of Caenorhabditis elegans.
The ~100 MB genome of C. elegans codes for ~20,000 protein-coding genes many of which are required for the function of the nervous system, composed of 302 neurons in the adult hermaphrodite and of 383 neurons in the adult male. In addition to housekeeping genes, a differentiated neuron is thought to express many hundreds if not thousands of genes that define its functional properties. These gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 148 1 شماره
صفحات -
تاریخ انتشار 1998